Different phosphorylation states of the anaphase promoting complex in response to antimitotic drugs: a quantitative proteomic analysis.

نویسندگان

  • Judith A J Steen
  • Hanno Steen
  • Ann Georgi
  • Kenneth Parker
  • Michael Springer
  • Marc Kirchner
  • Fred Hamprecht
  • Marc W Kirschner
چکیده

The anaphase promoting complex (APC) controls the degradation of proteins during exit from mitosis and entry into S-phase. The activity of the APC is regulated by phosphorylation during mitosis. Because the phosphorylation pattern provides insights into the complexity of regulation of the APC, we studied in detail the phosphorylation patterns at a single mitotic state of arrest generated by various antimitotic drugs. We examined the phosphorylation patterns of the APC in HeLa S3 cells after they were arrested in prometaphase with taxol, nocodazole, vincristine, or monastrol. There were 71 phosphorylation sites on nine of the APC subunits. Despite the common state of arrest, the various antimitotic drug treatments resulted in differences in the phosphorylation patterns and phosphorylation stoichiometries. The relative phosphorylation stoichiometries were determined by using a method adapted from the isotope-free quantitation of the extent of modification (iQEM). We could show that during drug arrest the phosphorylation state of the APC changes, indicating that the mitotic arrest is not a static condition. We discuss these findings in terms of the variable efficacy of antimitotic drugs in cancer chemotherapy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spindle checkpoint function and cellular sensitivity to antimitotic drugs.

AntimitoticDrugsDisrupt theNormal Function of the Mitotic Spindle and Cause Spindle Checkpoint ^MediatedMitotic Arrest Microtubule inhibitors such as Vinka alkaloids (e.g., vinblastine and vincristine) and Taxans (e.g., taxol/paclitaxel and docetaxel) are potent therapeutic drugs for cancer treatment. The cellular consequences of taxol/paclitaxel treatments over a wide range of doses (1 nmol/L–...

متن کامل

HSP90 Inhibition Enhances Antimitotic Drug-Induced Mitotic Arrest and Cell Death in Preclinical Models of Non-Small Cell Lung Cancer

HSP90 inhibitors are currently undergoing clinical evaluation in combination with antimitotic drugs in non-small cell lung cancer (NSCLC), but little is known about the cellular effects of this novel drug combination. Therefore, we investigated the molecular mechanism of action of IPI-504 (retaspimycin HCl), a potent and selective inhibitor of HSP90, in combination with the microtubule targetin...

متن کامل

The ubiquitin ligase CRL2ZYG11 targets cyclin B1 for degradation in a conserved pathway that facilitates mitotic slippage

The anaphase-promoting complex/cyclosome (APC/C) ubiquitin ligase is known to target the degradation of cyclin B1, which is crucial for mitotic progression in animal cells. In this study, we show that the ubiquitin ligase CRL2ZYG-11 redundantly targets the degradation of cyclin B1 in Caenorhabditis elegans and human cells. In C. elegans, both CRL2ZYG-11 and APC/C are required for proper progres...

متن کامل

Polo-like kinase 1: target and regulator of anaphase-promoting complex/cyclosome-dependent proteolysis.

Polo-like kinase 1 (Plk1) is a key regulator of progression through mitosis. Although Plk1 seems to be dispensable for entry into mitosis, its role in spindle formation and exit from mitosis is crucial. Recent evidence suggests that a major role of Plk1 in exit from mitosis is the regulation of inhibitors of the anaphase-promoting complex/cyclosome (APC/C), such as the early mitotic inhibitor 1...

متن کامل

Role of Polo-like kinase in the degradation of early mitotic inhibitor 1, a regulator of the anaphase promoting complex/cyclosome.

Early mitotic inhibitor 1 (Emi1) inhibits the activity of the anaphase promoting complex/cyclosome (APC/C), which is a multisubunit ubiquitin ligase that targets mitotic regulators for degradation in exit from mitosis. Levels of Emi1 oscillate in the cell cycle: it accumulates in the S phase and is rapidly degraded in prometaphase. The degradation of Emi1 in early mitosis is necessary for the a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 105 16  شماره 

صفحات  -

تاریخ انتشار 2008